
The State-Test Technique on Differential Attacks:
a 26-Round Attack on Craft and Other Applications

Dounia M’Foukh María Naya-Plasencia Patrick Neumann
Asiacrypt, December 10, 2025

Inria Paris, France



Key Recovery in Differential Attacks

P

P ′

Ein

∆in

Em

∆out

Eout

C

C ′

Kin Kout
Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin

Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks

1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]

1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P

1.2. Guess Kout and compute C ′ based on
C = E (P)

2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)

2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



Key Recovery in Differential Attacks

P

P ′

Ein ∆in

Em

∆out Eout

C

C ′

Kin Kout

2−p

Problem: efficiently generate tuples
(P, P ′, C , C ′, Kin, Kout) with

• Ein(P) + Ein(P ′) = ∆in using Kin

• E−1
out(C) + E−1

out(C ′) = ∆out using
Kout

(Classical) Differential Attacks
1. Generate (P, P ′) that can lead to ∆in

2. Encrypt and filter if (C , C ′) cannot
lead to ∆out

3. Verify ∆in and ∆out by guessing Kin

and Kout

Differential MitM Attacks [BDDLNP23]
1.1. Guess Kin and compute P ′ based on P
1.2. Guess Kout and compute C ′ based on

C = E (P)
2. Match on E (P ′) ?= C ′

1/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack

• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]

• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation

• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]

• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]

• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]

• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]

• Needs state guesses to partition the keys
• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]
• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]
• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]

• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]
• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]
• State guesses define non-linear equations in the key

• Solving them allows to recover more key material

2/7



State-Test Technique [BNPS14]

• Reducing key guesses improves complexity of attack
• Idea: guess part of the state instead of the key involved in its computation
• Example: y = S(x0 + k0) + S(x1 + k1)

• A guess of y is more efficient than guessing k0 and k1

• Introduced in the context of impossible-differential Attacks [BNPS14]
• Needs state guesses to partition the keys

• Also used in the context of differential-MitM attacks [AKMMNP24]
• State guesses define non-linear equations in the key
• Solving them allows to recover more key material

2/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks

• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)

• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations

• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks

• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



Our Contribution

State-Test Technique in Differential & Differential-Linear Attacks
• With counter

• If part of counter: need to partition the key (cf. impossible differential)
• If not part of counter: yield over-define system of equations
• Additional filtering & more key material recovered (cf. differential MitM)

• Without counter: similar to differential MitM attacks
• Improve best known attack on Pride

Insights into the Applicability of the State-Test Technique

First Attacks on 24 to 26 Rounds of Craft

3/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



The Tweakable Block Cipher Craft [BLMR19]

• 64 bit state, represented as a 4 × 4 matrix, and 128 bit key (K0, K1)

MC
Ki

PN SB ×32

Mix Columns
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1



2−4

Key Addition

Add Ki mod 2 in round i

Permute Nibbles

0 151 122 133 14

4 105 96 87 11

8 69 510 411 7

12 113 214 315 0

S-Box Layer

Apply s-box to all cells

4/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Differential Meet-in-the-Middle Attack on 23-Rounds [AKMMNP24]
K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

2−4

2−4

2−4

2−4

2−4

11-Round Distinguisher

Deterministic Extension

K0

MC K0 PN SB

K1

MC K1 PN SB

2−4

2−4

Probabilistic Key Recovery

MC K0 PN SB

MC K1 PN SB

2−4

2−4

Truncated-Differential Characteristic

5/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic Extension

Probabilistic Key Recovery

Zero-Round Distinguisher

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic Extension

Probabilistic Key Recovery

Zero-Round Distinguisher

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Compute same cells from both sides

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Compute same cells from both sides

→ Use as additional filter

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Compute same cells from both sides

→ Use as additional filter

Two-Round Structure

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Compute same cells from both sides

→ Use as additional filter

Two-Round Structure

One-round structure in [AKMMNP24]

6/7



Our Attack
K0

MC K0 PN SB

K1

MC K1 PN SB

K2i

MC K2i PN SB

K2i+1

MC K2i+1 PN SB

K20

MC K20 PN SB

K21

MC K21 PN SB

K22

MC K22 PN SB

2−4

2−4

2−4

Deterministic ExtensionProbabilistic Key Recovery

Zero-Round Distinguisher

Compute same cells from both sides

→ Use as additional filter

Two-Round Structure

One-round structure in [AKMMNP24]

Details in the paper
6/7



Comparison with Prior Work

Cipher Rounds Time Memory Data Attack Ref.
Craft 23 2125 2101 260 TD-MitM [AKMMNP24]

2111.46 2120 260.99 D [SYCHW24]
2109 236 258 TD-MitM This Work

24 2110 234 260 TD-MitM This Work
25 2117.58 248 260 TD-MitM This Work
26 2118 234 264 TD-MitM This Work

D: Differential TD-MitM: Truncated Differential MitM

Thank you for your attention!

7/7



Comparison with Prior Work

Cipher Rounds Time Memory Data Attack Ref.
Craft 23 2125 2101 260 TD-MitM [AKMMNP24]

2111.46 2120 260.99 D [SYCHW24]
2109 236 258 TD-MitM This Work

24 2110 234 260 TD-MitM This Work
25 2117.58 248 260 TD-MitM This Work
26 2118 234 264 TD-MitM This Work

D: Differential TD-MitM: Truncated Differential MitM

Thank you for your attention!

7/7


